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Abstract. Bluman, Reid and Kumei have introduced the potential symmetries, i.e. special non-
local symmetries. The concept of a non-local symmetry is aesthetically justified by the theory of
coverings. The basic idea is that solutions of the covering system imply solutions of the covered
system. Bluman, Kumei and Reid never considered the symmetries lost, i.e. local symmetries of
the covered system that do not extend to local symmetries of the covering system. Here, examples
of coverings are given that recover these fost symmetries, demonstrating the more nateral setting
of coverings. o

1. Introduction

Bluman and Reid (1988) and Bluman and Kumei (1989) have enlarged the set of local
symmetries by introducing the potential symmetries. A potential is an auxiliary dependent
variable that corresponds to a conserved form. A system of which one of the equations is
written in conserved form, gives rise to an auxiliary system which includes the potential. A
potential symmetry of a systemn is defired as a local symmetry of the auxiliary system that
does not correspond to a local symmetry of the system itself.

On the one hand potential symmetries truly enlarge the set of symmetries of a system.
On the other they involve a sttange phenomenon, here calied the loss of symmetries. Loss
of symmetries can occur, as local symmetries of the system do not have to extend to local
symmetries of its anxiliary system. ,

. This loss is disposed of by the introduction of non-local symmetries. The notion of these
symmetries is based on the theory of coverings developed by Krasil’shchik and Vinogradov
{1980, 1984a, b, 1989). Potential symmetries are special cases of non-local symmetries. In
this paper examples of coverings that recover lost symmetries presented in Bluman and Reid
{1988) and Bluman and Kumei (1989) are given. )

In section 2 local symmetries are introduced. In section 3 the theory of coverings is
explained briefly and the non-local symmetries are introduced. In section 4 an infroduction to
‘the examples of coverings is given. Four examples of coverings that recover lost symmetries
have been included in sections 5-8. In section 9 we discuss the geometric framework of
coverings.

2. Symmetries

Several authors (e.g. Ibragimov (1989), Olver (1987), Ovsiannikov (1932), and Vinogradov
(1984)) discussed the various aspects of symmetries of differential equations. Here, the notion
of a symmeiry is explained following Olver’s work.
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6410 T van Bemmelen

In differential geometric theory a system of partial differential equations is defined as an
algebraic submanifold of some finite-order jet bundle. We will explain this for an nth-order
system A involving p independent variables x = (x1,..., x») and g dependent variables
u = (u!,...,u%). Multi-indices I = (iy, .. ,ip) enable a compact notation for derivatives
of u: u = 3” lu*fax! =gt Heu®foxft - 0x), e.g uh o1, = 8u?fdx20x;. The kth-order
jet bundle J* is a manifold with local coordinate representation (x, u i<k The nth-order
system A is the submanifold {F = 0} C J*, e.g. the Korteweg-DeVries equation is given by
{ur = ity + Uy} C T3 = {(%. 2, 0, Uy, U, Bxx, Uxe, Hogs oxxxs Bzes Bagr, Yerr) ). We will use
the infinite jet space J* too.

The algebraic analogue of the partial derivative 3/8x is given by the total derivative Dy
(Olver 1987, p 112)

Dk—a-kzzu”‘a k=1,...,p 2.1

a=1 [I[>0

where u?, . is the variable corresponding to 814 /ax"dx,. Likewise, the higher-order
partial derivative 3V fax is represented in the algebraic setting by D' = Df o -+ o D where
Dl = Di~! o D;. Differential consequences of the ath-order system A = {F =0 cJ"
are given by prolongation. The kth-order prolongation of the system A is given by
prPA = {pr®F = 0} ¢ J**" with pf®F = (D'F) The infinite prolongation of
A is denoted by prA (= pr®A C J).

Roughly speaking, symmetries of a system aré one-parameter groups of transformations
that transform solutions of the system to other solutions of the same system. A one-parameter
group of transformation is directly related to its infinitesimal generator, i.¢. a vector field. From
now on, 2 symmetry is identified with its infin"'esimal generator. The infinitesimal generators
are fixed by fixing their components on J¢ (Ulver 1987, p 295):

My

L

q
v = Z -;— Z a_q? . . (2.2

i=1 =1

The coefficients £/ and ¢, are functions on some finite-order jet space. Other components
of the infinitesimal generator are given by prolongation of »; the prolongation formula reads
(Olver 1987, p 295)

r(k)v—v-%—;I; Qaau! ] Qé:DI(% ;.5: a)+;§zu“ 23)

Because & and g, are defined on some finite order jet bundle, so are the Q. Now we
give the symmetry eguation.

Definition 2.1 (Olver 1987, p296). v =Y 1 E8/0x; +3 .0 _, 0ud/3u®, with & ,0q: J* —
IR, corresponds to a symmetry of A = {F =0} C J" if and only if

pru(F) =0 whenever pr®F =0. (2.4)

The symmetries defined here are known as local or generalized symmetries. Generalized,
because they generalize the point symmetries, which are symmetries  that are well defined
vector fields on J9, i.e. &% and ¢, are functions on J°.
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Trivial symmetries (Olver 1987, p 298) give rise to equivalence classes of symmetries and
suitable representatives are given by the evolutionary vector fields (Olver 1987, p 297)

vp=3" Our - , . 2.5)

=1

of which the characteristic g=1(0,.. , Q) is defined on the algebraic set pri¥ A ¢ J*+»
for some k. The representative of the equwaleﬂce class corresponding tov = 3., £13/9x; +
4 | 920/3u® has characteristic Oy =@, — > 7 E'uf e =1,...,4q.

3. Coverings and non-local symmetrics

The theory of coverings forms the differential geometric setting that allows us to introduce
non-local symmetries. These symmetries arise, if the characteristic Q of the evolutionary
vector field vy permit dependency on non-local variables, i.e. integrals. Interesting cases
concern non-local variables that correspond to integrability conditions of the system.

The idea behind the theory of coverings is that systems of partial differential equations can
cover each other, i.e. solutions of the covering system give rise to solutions of the covered
system. The covering system can be viewed as the covered system extended with non-
local variables. Krasil’shchik and Vinogradov have succeeded in giving concrete form to
this idea and-in this section their work (Krasil’shchik and Vinogradov 1989) is followed.
Earlier publications on a exposition of their idea (Krasil’shchik and Vinogradov 1984a, b,
1989) might be easier to understand. Before the theory of coverings is discussed, the algebraic
concept of a system of partial differential equations, as has been introduced in the previous
section, needs reconsideration.

The infinite prolonged system prA = {prF = 0} C J*°is assumed to be aregular manifold
ftself. Local coordinates of prA are selected from the local coordinates of J°°; the selected
ones are called internal coordinates. To enhance local coordinate representation, the following
sets of multi-indices are introduced: Z(w) = {I:u§ is internal coordinate} fore = 1,...,q.
Thus the Iocal coordinate representation of prA is given by {(x, #7)rerq}. The other local
coordinates of J are assumed to be expressed in terms of the internal coordinates.

The total derivatives Dy, corresponding to J®, k = 1,..., p, are restricted to prA; the
restriction of Dy, is denoted by Dy

_ 5 4 8 -
I 5 T PR e
= 7”! }

Note that if #7 , is not an internal coordinate, i.e. (/, k) & Z(w), then this coordinate is expressed
in terms of the internal coordinates.

The differential equation A is now seen as the manifold prA provided with Cartan
distribution generated by Dy, ..., D,, ie. each point of prA is linked up with the linear space
generated by Dy, ..., D Essential features of the Cartan distribution are its finite dlmensmn,
i.e. p, and its complete mtegrablhty,l e.D; andD commute ([D;, D J=0Wfori,j=1,.

The theory of coverings is based on the concept of a system of parual differential equat:lons
as a manifold provided with a Cartan distribution. A simplified, but strong enough definition
of a covering is the following. . .
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Definition 3.1 (Krasil’shchik and Vinogradov 1989, p 166). A covering of the system prA is
given by aprojection 7 A — prA, whereby A is amanifold provided with a Cartan distribution,
such that the Cartan distribution of A is projected onto the Cartan distribution of prA. In other
words A covers pra.

Coverings of a system prA are found by searching for extensions of the form prA =
prA x R, where 5 may be infinite. In section 9 we discuss the reason for taking infinite-
dimensional coverings into consideration as well. In local coordinates ptA looks like
{0, 4B ez X (@', ...,0°)} where @ = (0, ..., ") are the non-local variables. The
total derivatives have to be extended by the components for w:

J 2

D, =D Xt
% k+; S

k=1,...,p. (32)

The coefficients X%, of which each depends on a finite number of variables in prA only, have
to satisfy the integrability conditions [D;:, D;] = 0, also written as

Dix)=D;(x}) iLj=1,....,p a=1,...,s. (33)

These equations are also known by the work of Estabrook and Wahlquist (1975) about
prolongation structures of differential equations.

Some integrability conditions provide no information about the system at all and the
corresponding covering is therefore called trivial (Krasil’shchik and Vinogradov, p 169). This
gives rise to the following equivalence classes: isomorphic coverings are called equivalent.
When describing coverings over prA, it is natural to consider the equivalence classes only.

Once acovering 7: prA ~ prA hasbeen established, one might wonder if frA corresponds
to a system of partial differential equations, i.e. can be written as prA. The answer is positive;
the covering system A is given by (Krasil’shchik and Vinogradov 1989, p 168)

A wé = X, i=1,...,p e=1,...,5 3.4)

where w§ represents the derivative dw®/dx;. The system A is well defined, for in algebraic
sense the integrability equations §%w® /8x;3x; = 8%w®/dx;9x; are equivalent to (3.3) and so
correspond to differential consequences of the system A. Solutions of A give rise to solutions
of A and therefore A is said to cover A. ’

Definition 3.2 (Krasil’shchik and Vinogradov 1989, p 185). Symmetries of the covering
system are called non-local symmetries of the covered system.

The projection of the non-local symmetry, e.g vggr = 2o Qud/3u® +
Yot Re8/3w® is called the shadow (Krasil’shchik and Vinogradov 1989, p 185), ie.
vg = Y 4_; 0,8/8u% The shadow of a non-local symmetry is a non-local solution of
the covered system.

Definition 3.3 (Krasil’shchik and Vinogradov 1989, p 195). A non-local solution of the system
prA = {prF = 0} covered by pfA = prA X w, is given by a characteristic Q defined on praA,
which satisfies

prog(F)=0 (3.5)

where prog = 324, T DY (Qa)a/3u5.
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For convenience the evolutionary vector field v corresponding to a non-local solution Q0
is also referred to as a non-local solution. A shadow is a non-local solution, but is a non-local
solution a shadow? In other words, does there exist a covering in which the non-local solution
is the shadow of a local symmetry? The answer to this question has been given by Khor’kova
(1989) in the following theorem.

Theorem 3.1 (Krasil’shchik and Vinogradov 1989, p 198). To any non-local solution O
corresponds a non-local symmetry in an appropriate extension of the covering system.,

In section 7 a sketch of the proof to this theorem is revealed; see also section 9. Examples
of this theorem are found in sections 5, 6 and 8.

4, Introduction to the examples

Examples of coverings are given in the light of examples taken from the explanation of
potential symmetries presented by Bloman and and Kumei (1989) and Bluman and Reid
(1988). Potential symmetries of a system, of which one of the equations is in conserved
form, are local symmetries of the auxiliary system that arises by introduction of the potential
corresponding to the conserved form. The auxiliary system covers the original system and so
potential symmetries are special cases of non-local symmetries.

" We will show that the disappearance of symmetries, i.e. local symmetries of the original
system that do not correspond to local symmetries of the auxiliary system, is disposed of, for
any symmetry lost is recovered in an appropriate covering of the auxiliary system. In fact the
lost symumetries are very special non-local solutions of the given covering and so theorem 3.1
is applicable.

Bluman and others have computed point symmetries of the wave equation 1y, = cZu,,,
in which the wave speed ¢ = ¢(x), and of the auxiliary system corresponding to the potential
v vy = uty/c? and vy = u,. In the first example we set ¢ equal to ./x. In this setting one
symmetry is lost, but recovered in an infinite-dimensional covering.

In the other three examples ¢ equals 1 —x2, in which case two point symmetries are lost.
In the second examole one of them is recovered in a one-dimensional extension of the auxiliary
system.

In the third example the other lost §ymmetry is recovered. Computations similar to the ones
performed in the previous examples are seen to be more complicated. Therefore an abstract
construction of the desired covering, which runs in accordance with the sketch of the proof to
theorem 3.1, is favoured.

In the fourth example a covering of the auxiliary system is given, not constructed, which
recovers the lost symmetry considered in the previous example.

5. First example
Bluman has computed the point symmetries of the wave equation
Uyy = Xlhzy ' ' (5.1)

and the auxiliary system which includes the potential v:

Uyy = Xlixx Uy = UyfX Uy = Uy . (5.2)
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The point symmetry of the covered system (5.1), which cannot be extended to a local symmetry
of the covering system (5.2), is given by

X = (yu — dxyu, — (% + 4x)uy) 3, (= 4xyd; + (y* + 4x)3, + yud,) (5.3)

of which the z-component is denoted by U = yu — dxyu, — (y* + 4x)u,.
The attempt to extend X to a symmetry of system (5.2), involves the introduction of the
v-component, whose coefficient, V, has to satisfy

D, (V) = D, (U)/x = (yuy + u — dxytexy — dxuy — (3* + 4x)ityy — 2yu,) [
(5.4)
Dy(V) =D (U) = yuy — dxytizy — 4yuts — (V% + dx)uyy — du, .

The second equation of (5.4) reduces to Dy (V) = Dy(—yv — 4xyv, — (3> +4x)vy) + v
and can be solved only if the integral #! = [ vdy is introduced. In fact 1} is the potential
corresponding to the differential equation v, = u, /x:

Hyy = Xllzx Uy =y X Uy =y u,=u/x u;=v. (5.5)

The variables present in the sefting (5.5) enable solving (5.4), whose solution is V =
—yv —4xyv, — (y* + dxyvy + ul. To be precise, the tuple (U, V) is a non-local solution of
the system (5.2) covered by (5.5).

Next the u!-component of X needs to be computed, whose coefficient has to satisfy the
following system:

D, (U = U/x = (yu — 4xyu, — (5% + 4x)u,) /x
(5.6)
Dy(U') =V =—yv—4dxyy; — (y2 + 4x)vy, + ul.

The solution of the first equation is to be U! = yu! —dxyul — (y + 4x)u;, +4 {vdx. Also
the integral v! = [ vdx is a potential, giving rise to

1 1 1

1
Uyy = Xzx Up = UyfX Vy=1uUy Uy =ufx u,=v v =4

(5.7

The non-local solution (U, V, U'), where U! = yu'! —dxyu — (y* 4 4x)u, + 4v', of
system (5.5) covered by system (5.7) is to be extended by the v*-component, whose coefficient
has to satisfy

DV =V = —yv — dxyv, — (y* + 4x)vy + u!
(5.8)
Dy(V!) = U = —yu — dxyu, — (y* +4x)uy.

To solve this system, the potential > = { »! dy is added, the superseript of which is an index,
not a power. Including the potential x2 the system (5.7) extends to

Uyy = XUy V= Uy/X Uy =y ui:u/x u;,=v

. . 5.9
1 _ 1 _ — 2 __ .1
V=V Uy =u uy=u oy =v
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and the solution of (5.8) reads V! = 3yv! —4xyvl — (y* + 4x)v} + 4xul — 3u>.
Likewise computation of the u®-component, whose coefficient is to be computed from
D, (U?) = U and Dy(U?) == V!, involves yet another potential %

Uyy = Xllyy Uy =y /x vy =y ul=u/x u; =

(5.10)
1_ 1_ 2,1 2t 2,1 22 a2
v=y v,=u Hy =4 Hy=v vy=v vy=xu —u.

The solution U? = 5yu? — 4:cy.u,2c - (¥ + 4x)u§ + 8v? turns (U, V, UL, VI, U?) into a
non-local solution of system (5.9) covered by (5.10).

The coefficient of the v2-component, denoted by V2, has to satisfy Dx(Vz) = V! and
DJ,(VZ) = xU'! — U? and is found to be expressed in another potential #3, V2 = 7yv? —
4xyv -+ 4x)v -+ 8xu’ 15u3 Includmg the potential #>, the system (5.10) extends to

1 1

— — — — | - — —
Hyy = Xlixx Up = HyfX Uy = Uy uh=u/x Uy =1 W= Uy =u
5 ) ) .11
2_ .1 .2 _ .1 2_ .1 . _ S I R
Uy =W Uy, =0V U =v v =Xk —u Wy =u" uy,=u
and so on. An infinite number of variables u, v, u!, v!, u?, v2, ... evolve, which are seen to
satisfy the system
— — 1 1 _
|y = XUy Up = UyfX Uy = Uy U, =ufx uy =10
(5.12)
PR N S ST T 2% I SR XS R s
e (i—Du o =uow =v i=1,2,3,....

In the setting of this system the symmetry X (5.3) prolongs to the symmetry 79, + Vd, +
S (Uidu + Vidy), where

U =yu—4dxyu, — (* +4x)uy
V = —yv —dxyv, — (32 +4x)vy + u!
X , . . (5.13)
= (4 — Dyu’ — dxyul — (7 +4x)ul, + 4iv’
= (4i — Dyv’ —dxyv, — P+ 4x)v!, + dixul — (4% - D't
Thus the lost symmetry of system (5.1) covered by system (5.2) turns out to be a non-local
symmetry of (5.2). .
6. Second example
Here one of the two lost point symmetries of the wave equation -
Uyy = Colyy c=1-x" (6.1)

covered by the auxiliary system

2 2
u}w =C gy vx e uy/C v_v = Uy (6.2)
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is considered, whereas the other is treated in the next subsection.
The symmetry ¥ = U3d, of the wave equation {(6.1)

¥ = (xu + cu,)dy, (6.3)

needs to be extended by V' 8,, such that U8, -+ V 8, is a symmetry of the auxiliary system (6.2).
The symmetry equation results in the following system for V:

D (V) = Dy(U)/6* = (xty + ctyy) /c* = Du(—xv + cvg) + v
(6.4)
Dy(V) =Dy (U) = (u — Xz + Cliyz) = Dy(—xv+cv) + 1.

In order to solve this system for V, the integral { vdx or [ wdy needs to be available.
Both integrals equal the potential w corresponding to the differential equation vy = u,, giving
rise to the extended system

Ly, = Py vy = u),/c:2 Uy = Uy Wy =0 Wy=1U. (6.5)

and the solution of (6.4) reads V = —xv + cvy + w.
Next the non-local solution (I, V) of system (6.2) covered by (6.5) is to be extended to 2
symmetry U3, + Va, + W3, of the covering system, where W is to be computed from

D(WY=V = —xv+cv, +w =D, (xw+ cw,)
(6.6)
Dy(W) = U = xu + cty = Dy(xw + cwy) .
As it happens, this system for W can be solved without introduction of further non-local

variables, the solution being W = xw - cw;. So the symmetry ¥ (equation (6.3)) prolongs
to the symmetry of system (6.5) given by

(xu 4 cuy}dy + (—xv +cve +w)d, + (xw 4+ cwy )3y ®.7

which in consequence is a non-local symmetry of system (6.2).

7. Third example

In the previous section one of the two lost point symmetries has been recovered. Here the
other is considered.
The symmetry Z = U3, of system (6.1)

1 1
Z=Gyutoym+Cudsy  C=3 m(i—f—l) 1)

is to be extended to a symmetry U 8, + V3, of system (6.2}, so V has to satisfy

D, (V) =D, (U)/c* = (xtt + xyuy + city + CYlixy + Cityy)/c* o
Dy(V) = Dy(U) = yit + xytty — 2xytiz + Cyigz + i,/ + Cligy . '
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The solution to these equation reads V = —xyv + cyv, + C vy -+ w, where w is a potential of
system (6.2), giving rise to the extended system

Hyy = Cotlzy v = uy/ct vy =y we =xufet +yv wy=yut+xv. (7.3)
Next the w-component is to be compuied from

Dx(W) = xU/c* + yV = Dy(xyw + cyw; + Cwy) — (2yu/c® + (C + x/c)v)
(7.4)
Dy(W) = yU +xV = Dy(xyw + cyws + Cwy) — ((C + x/c)u + 2yv)

whose solution is W = xyw + cyw, 4+ Cw,y — p, including the non-local variable p, leading
to the extension

(7.3) Px = 2yujct + (C +x/c py=(C+x/u+2yv. (7.5)

Likewise the non-local solution (U7, V, W) of system (7.3) covered by (7.5) has to be 7
turned into a symmetry U3, 4 V3, + Wa,, + P8, of (7.5), so P is to be computed from

Dy (P) = 2yU/c* + (C + x/c)V Dy(P) = (C+x/c)U +2yV. (7.6)

The solution P = (C +x/cHxw + cyv + Cu) + 2Cyv + 2y u/'c 4w/e + g has given
rise to the extension including ¢:

(7.5) gx = (3x/c—3C =2xyHu/? +6xw/c? gy = (Bx/c—3C —2xy)u+2yw.
(7.7)

Further extensions of system (7.7) are necessary for construction of the covering of the
auxiliary system {6.2)in which the symmetry Z (7.1) is extended properly, but the computations
involved are hard to perform and therefore the abstract approach as given in the sketch of the
proof to theorem 3.1 is preferred. For the case under consideration this boils down to a series of
successively one-dimensional extensions of the covering system, in which limit the non-local
solution prolongs to a symmetry. The construction uses induction on the number of potentials
introduced.

Suppose that after several one-dimensional extensions, whereby the potentials p!, ...,
p"~! have been included, the non-local solution v,.; = vg,_,-of the system A,_; covered by
the system A, has been constructed. Consider the covering system A, arisen from A,_; by
including the potential p*:

A, = B (7.8)
n = P;l — Fn:—-l’ P;. = Gn—l . -

Thus the integrability equation p7, = p_ gives rise to the conservation law D, (F "1y =
D, (G™ 1) of Apy.

The attempt to extend the non-lfocal solution v,y = U9, + E:II Pia,,.- to a symmetry
Up—1 + P"8pn of A, results in the following system for P*:

Dy(P") = F* Epro, 1 (F*)  Dy(P") =" Epro,(G"") (7.9)

giving rise to the definitions of F* and G".
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Assume that this system for P” cannot be solved in the current setting, otherwise the
desired covering has been provided, i.e. the non-local solution v = U3, of Ag covered by A,
extends to the symmetry ¢, = v, + P"3,n of A,,.

The solution of system (7.9) may then be given by P* = p"*1, where the potential p**!
corresponds to the conservation law D, (F*) = D,(G") on A, (Krasil’shchik and Vinogradov
1984, p 204). So v,—; extends to the non-local solution v, = v,—; + p"*! dpn of Ap covered
by Anygi:

A,

An-l-l = {p;z+l = F", p;+l =G". ' (710)

Next, the same has to be done for P"*! and so on. By induction, an infinite number of
potentials is introduced, giving rise to the system

—~ Ag
A=1"; . . (7.11)
{ x+1=F‘,P;:+1=Gl,1=0,1,2,.-.-

The system A covers A, as desired, for the non-local solution vp = U8, corresponds to the
symmetry

o
Ud+ Yy pHlay (7.12)

i=1

For the case under consideration Ap is the wave equation (6.1), A; is the auxiliary
system (6.2) and U3, = Z (7.1). In consequence the functions F” and G”, see (7.9), where
FY = uy/c? and G° = u,, simplify to

Fr=prug(F*)  and  G" =prog(G™T). (7.13)

8. Fourth example

In the previous example the lost symmetry Z (7.1) of system. (6.1) covered by the auxiliary
system (6.2) has been recovered by an abstract construction, giving rise to the covering A
{equation (7.11)). Here, another covering is given, which also recovers this lost symmetry.
The following system covers system (6.1) (4° = u and v® = v):
uyy = Czuxx
vl =ul/ vi=ul pi=ut/F pi=vt gi=v" gi=a" WP =pt (B1)
wH=¢" n=0,1,23,....
A generalized vector field 3 72, U8, + V8, + P'8, + Q'8 is a symmetry of (8.1) if
and only if (I = U?%)
D2(U) = *D2(U)
Do (VH) = Dy (U /et Dy (V) =D, (U*) D(PYy =U/c? Dy(PHY=V! (82)
DAY=V Dy@H=U'" DU =P D,WM=0 i=0123...
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holds for all solutions of (8.1).
Computations have shown out that the symmetry Z = U3, (equatlon (7.1))canbe extended
to the symmetry .2y U8, 4+ V'3 4 P'8,y + Q'8y, where

U™ =xyu" + cyu;, + Cuy — 2n(xg" + cv™)

V= —xyv® +cyvy + Cvy +yg". — 2nu" fo + (2n + D(xp" — u"thy
, (8.3)
P" = —xyp” + cypy + Cp§ + yu™' + 2(n + D™t — g™y —@n+ Dg"jc

0" = xyq"+cyqf +Cqf — 2n+ Dxe™ 4 cp").

Because the auxiliary system (6.2) is covered by the system (8.1) and Z extends to a
symmetry of (8.1), the lost symmefry Z turns out to correspond to a non-local symmetry of
the auxiliary system.

9. Comment ¢n infinite-dimensional coverings

One might question the infinite-dimensional coverings and restrict oneself to finite-dimensional
coverings only. ~ However, infinite-dimensional coverings arise from the same natural
geometrical point of view that gave rise to the generalized symmetries.

To show this we consider a generalized vector field, i.e. an expression in the form

”“Zé'ax, Y e e - 6D

=1

where £/ and g, are defined on some jet bundle J*, k finite. If £ and ¢ are defined on JO,
then this generalized vector field is a vector field on J°. The corresponding group action is a
point transformation on J? and therefore symmetries in this form are called point symmetries.

If the generalized vector field is not a point vector field, then it is not a geometric object
of J9. Yet we can prolong the vector field and see if its kth-order prolongation turns out to be
a vector field of J* for some k finite:

f""”—”+ZZQaau, 0 =D~ E? g)+Y g, 09

a=1 [i}= =1 i=1

As it happens, some generalized vector fields correspond to vector fields on J1.

Yet not all generalized vector fields are recovered in this way as geometrical objects. For
other k finite, no more generalized vector fields are recovered as geometrical objects of the kth-
order jet bundle, as proven by Bicklund (1876). Yet all generalized vector fields correspond to
well defined vector fields on the infinite-order jet bundle J°°, Thus, in general, a generalized
vector field is a geometric object of J*°,

Now we will consider a non-local symmetry, or more precisely, a non-local solution, i.e.

; 0 Z a
fat e & ©3

o
=1 po L

Mh

where £’ and ¢, depend on a finite number of local and non-local variables. Now we want
to recover this expression by a geometric object, i.e. a well defined vector field of some jet
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bundle. As before, in general all differential consequences of the variables considered, local
and non-local, need to be included.

However, the components of the non-local variables have to be constructed as well
according to prolongation. As it happens, in general, new non-local variables have to be
involved in order to obtain those components. This resembles the case of the generalized
vector fields becanse, in general, components of derivatives involve higher-order derivatives,
which then have to be included as well.

A typical example of the introduction of an infinite number of non-local variables in order
to recover a non-local symmetry has been obtained in section 5. Also an infinite number of
conservation laws of the Korteweg—DeVries equation i, = unt| -+ 43, 41 = Uy and iz = Uzxz,
arises by recovering the non-local solution

(3t (Su”uy + 10uus + 20u117 + 6us) + 6x(utey + uz) + 2puy + 8(u* +3u3))8, . 9.4

The non-local variable p corresponds to the conservation law u, = (42/2 4 uz)_, i.e. py =
and p, = u?/2 + us.

10. Conclusion

We have shown that the theory of coverings set up by Krasil’shchik and Vinogradov (1989)
offers the natural setting for the introduction of non-local symmetries. Potential symmetries,
i.e. non-local symmetries introduced by Bluman and Kumei (1989) and Bluman and Reid
{1988), give rise to loss of symmetries. Four examples of coverings have been given, in which
symmetries lost have been recovered, demonstrating the power of the theory of coverings.
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