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Applications of coverings and non-local symmetries 

The0 van Bemmelen 
Department of Applied Mathematics, biversiiy of -enti, PO Box 217, 7500 AE Ensdede, 
The Netherlands 

Received 21 May 1993 

Abstract Bluman, Reid and Kumei have intrcdueed the potential symmehies, i.e. special non- 
local symmeeies. The concept of a non-local symmehy is aesthetically justified by the theory of 
coverings. The basic idea is that solutions of the covering system imply solutions of the covered 
system. B I u m ,  Kumei and Reid never considered the symmetries Los< i.e. Id symmetries of 
the mvered system that do not extend to local symmetries of the covering system. Here, examples 
of coverings are given that recover these lost symmetries, demonstrating the more natural setting 
of coverings. 

1. Introduction 

Bluman and Reid (1988) and Bluman and Kumei (1989) have enlarged the set of local 
symmetries by introducing the potential Symmetries. A potential is an auxiliary dependent 
variable that corresponds to a conserved form. A system of which one of the equations is 
written in conserved form, gives rise to an auxiliary system which includes the potential. A 
potential symmetry of a system is defined as a local symmetry of the auxiliary system that 
does not correspond to a local symmetry of @e system itself. 

On the one hand potential symmetries truly enlarge the set of symmetries of a system. 
On the other they involve a strange phenomenon, here called the loss of symmetries. Loss 
of symmetries can occur, as local symmetries of the system do not have to extend to local 
symmetries of its auxiliary system. 

This loss is disposed of by the introduction of non-local symmetries. The notion of these 
symmetries is based on the theory of coverings developed by Krasil’shchik and Vinogradov 
(1980, 1984a, b, 1989). Potentid~symmetries are special cases of non-local symmetries. In 
this paper examples of coverings that recover lost symmetries presented in Bluman and Reid 
(1988) and Bluman and Kumei (1989) are given. 

In section 2 local symmetries are introduced. In section 3 the theory of coverings is 
explained briefly and the non-local symmetries are introduced. In section 4 an introduction to 
‘the examples of coverings is given. Four examples of coverings that recover lost symmetries 
have been included in sections 5-8. In section 9 we discuss the geometric framework of 
coverings. 

2. Symmetries 

Several authors (e.g. Ibragimov (1989). Olver (1987), Ovsiannikov (1982), and VInogradov 
(1984)) discussed the various aspects of symmetries of differential equations. Here, the notion 
of a symmetry is explained following Olver’s work. 

0305-4470/93/2264W+12$07.50 @ 1993 IOP Publishing Ltd 6409 



6410 T van Bemmelen 

In differential g e o m e ~ c  theory a system of partial differential equations is defined as an 
algebraic submanifold of some finite-order jet bundle. We will explain this for an nth-order 
system A involving p independent variables x = (x , ,  . . . , xp) and 4 dependent variables 
U = ( U ' ,  . . . , U*). Multi-indices I = ( i l ,  . . . , ip) enable a compact notation for derivatives 

/ $ ... ax;, e.g. u & ~ , , )  = a3u2/ax:ax3. The kth-order 
jet bundle Jk is a manifold with local coordinate representation (x. U[) ( [ (<k.  The nth-order 
system A is the submanifold {F = 0) C I", e.g. the Korteweg-DeVries equation is given by 
{ut = uux + u d  c J 3  = Kx, t ,  U, uz, Ut. U,, uXt, uIl, uxxx, uxII. u d ) .  We will use 
the infinite jet space J m  too. 

The algebraic analogue of the partial derivative a/axk is given by the total derivative Dk 
(Olver 1987, p 112) 

ofu :  alIlua/ax' = a+-+bua ax i 

where if';,.?, is the variable corresponding to alll+'ua/ax'axk. Likewise, the higher-order 
partial denvative al'yax' is represented in the algebraic setting by D' = D: 0.. . o D$ where 
Di = D;? o Dk. Differential consequences of the nth-order system A = {F = O} C J" 
are given by prolongation. The kth-order prolongation of the system A is given by 
pr(')A = (pr(')F = 0) C Jkin with pr")F = (D'F),Il.,k. The infinite prolongation of 
A is denoted by prA (= p P A  c Jm). 

Roughly speaking, symmetries of a system are one-parameter groups of transformations 
that transform solutions of the system to other solutions of the same system. A one-parameter 
group of transformation is directly related to its infinitesimal generator, i.e. a vector field. From 
now on, a symmetry is identified with it$ infin"esimal generator. The infinitesimal generators 
are fixed by fixing their components on J o  ((Jlver 1987, p 295): 

The coefficients ti and qa are functions on some finite-order jet space. Other components 
of the infinitesimal generator are given by prolongation of w; the prolongation formula reads 
(Olver 1987, p 295) 

Because 5' and are defined on some finite order jet bundle, so are the Qi. Now we 

Dejinition2.1 (Olver 1987, p 296). w = E:=, cialaxi +E:=, qma/auu, with#',q,: J k  + 

give the symmetry equation. 

R, corresponds to a symmetry of A = {F = 0} c I" if and only if 

pr")w(F) = 0 whenever P ~ ( ~ ) F  = 0.  (2.4) 

The symmetries defined here are known as local or generalized symmetries. Generalized, 
because they generalize the point symmetries, which are symmetries w that are well defined 
vector fields on Ja, i.e. 6' and rp, are functions on .la. 
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Trivial symmetries (Olver 1987, p 298) give rise to equivalence classes of symmetries and 
suitable representatives are given by the evolutionary vector fields (Olver 1987, p 297) 

of which the characteristic Q = (QI, . . . , Q4) is defined on the algebraic set pdk)A c .Ikt" 
for some k .  The representative of the equivalence class corresponding to w = E:=, .$'a/axi + 
CZ,  paa/auu has characteristic Q, = pa - E:=, .$'U;, (Y = I . .  . . , q. 

3. Coverings and non-local symmetries 

The theory of coverings forms the differential geometric setting that allows us to introduce 
non-local symmetries. These symmetries arise, if the characteristic Q of the evolutionary 
vector field W Q  permit dependency on non-local variables, i.e. integrals. Interesting cases 
concern non-local variables that correspond to integrability conditions of the system. 

The ideabehind the theory of coverings is that systems of partial differential equations can 
cover each other, i.e. solutions of the covering system give rise to solutions of the covered 
system. The covering system can be viewed as the covered system extended with non- 
local variables. Krasil'shchi and Vinogradov have succeeded in giving concrete form to 
this idea and in this section their work (Krasil'shchik and Vinogradov 1989) is followed. 
Earlier publications on a exposition of their idea (Krasil'shchi and Vinogradov 1984% b, 
1989) might be easier to understand. Before the theory ofcoverings is discussed, the algebraic 
concept of a system of partial differential equations, as has been introduced in the previous 
section, needs reconsideration. 

TheinfiniteprolongedsystemprA = [prF = 0}  c Jmisassumedtobearegularmanifold 
itself. Local coordinates of prA are selected from the local coordinates of J-;  the selected 
ones are called internal coordinates. To enhance local coordinate representation, the following 
sets of multi-indices are introduced: Z(a) = [ I :  U: is internal coordinate} for (Y = 1, . . . , q. 
Thus the local coordinate representation of prA is given by [ ( x ,  u y ) ~ ~ ( ~ ) ) .  The other local 
coordinates of .Im are assumed to be expressed in terms of the internal coordinates. 

The total derivatives Dk corresponding to Jm, k = 1, . . . , p ,  are restricted to prA; the 
restriction of Dk is denoted by 6k: 

N~tethatifu:,~isnotanintemalcoordinate,i.e. (I, k )  $Z(or), thenthiscoordmateisexpressed 
in terms of the internal coordinates. 

The differential equation A is now seen as t the manifold prA provided with Cartan 
distribution generated by 61, . . . , Dp, i.e. each point of prA is linked up with the linear space 
generated by DI , . . . , Dp. Essential features of the Cartan distribution &e its finite dimension, 
i.e.p,anditscompleteintegrability,i.e.D,iand~jco~ute([Di, Dj] = Ojfori, j = 1,. . . , p .  

The theory of coverings is based on the concept of a system of partial differential equations 
as a manifold provided with a Cartan distribution. A simplified, but strong enough definition 
of a covering is the following. 

.~ 
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Dejinition 3.1 (Krasil'shchik and Wnogradov 1989, p 166). Acovering of the systemprh is 
givenby aprojectionr: A + prA, whereby Aisamanifoldprovided withacartandistribution, 
such that the Cartan dis~bution of A is projected onto the Cartan distribution of prA. In other 
words A covers prA. 

Coverings of a system prA are found by searching for extensions of the form @A = 
prA x Rs, where s may be infinite. In section 9 we discuss the reason for taking infinite- 
dimensional coverings into consideration as well. In local coordinates fiA looks l i e  
[ ( x ,  U : ) I ~ ( ~ )  x (mi, .  . . , os)] where o = (ol, . . .,os) are the non-local variables. The 
total derivatives have to be extended by the components for w: 

The coefficients XL, of which each deEn+ on afinite number of variables in @A only, have 
to satisfy the integrability conditions pi, Dj] = 0, also written as 

G i ( x ; ) = f j j ( x & )  i , j = i  ,..., p u = l ,  ..., s .  (3.3) 

These equations are also known by the work of Estabrook and Wahlquist (1975) about 
prolongation structures of differential equations. 

Some integrability conditions provide no information about the system at all and the 
corresponding covering is therefore called wivial (Krasil'shchik and Viogradov, p 169). This 
gives rise to the following equivalence classes: isomorphic coverings are called equivalent. 
When describing coverings over prA, it is natural to consider the equivalence classes only. 

Oncea covering T: $A + prA hasbeen established, onemightwonderif@A corresponds 
to a system of partialgierential equations, i.e. can be written as prA. The answer is positive; 
the covering system A is given by (Krasil'shchik and Vinogradov 1989, p 168) 

A w g = X &  i = l ,  . . . , p  e = l ,  ..., s (3.4) 

where wp represents the derivative aw'/ax;. The system is well defined, for in algebraic 
sense the integrability equations a2w"/axiaxj = azuJlu/axjaxi are eq$alent to (3.3) and so 
correspond to differential consequences of the system A. Solutions of A give rise to solutions 
of A and therefore A is said to cover A. 

Dejinition 3.2 (Krasil'shchik and Wnogradov 1989, p 185). 
system are called non-local symmetries of the covered system. 

Symmetries of the covering 

The projection of the non-local symmetry, e.g. V(Q,R, = EHl Qua/aua + zu=[ R d / a w "  is called the shadow (Krasil'shchik and Viogradov 1989, p 185). i.e. 
W Q  = C:=, Q,a/au'. The shadow of a non-local symmetry is a non-local solution of 
the covered system. 

Dejinition3.3(Krasil'shchikand Wnogradov 1989,p 195). Anon-localsolutionofthesystem 
prA = {prF = 01 covered by @A = prA x w, is given by a characteristic Q defined on @A, 
which satisfies 

$WQ(F) = 0 (3.5) 

where F W Q  = E",=, C:=06'(Q,)a/auy. 
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For convenience the evolutionary vector field UQ corresponding to a non-local solution Q 
is also referred to as a non-local solution. A shadow is a non-local solution, but is a non-local 
solution ashadow? In other words, does there exist a covering in which the non-local solution 
is the shadow of a local symmetry? The answer to this question has been given by Khor’kova 
(1989) in the following theorem. 

Theorem 3.1 (Krasil’shchik and Knogradov 1989, p 198). To any non-local solution Q 
corresponds a non-local symmetry in an appropriate extension of the covering system. 

In section 7 a sketch of the proof to this theorem is revealed; see also section 9. Examples 
of this theorem are found in sections 5.6 and S. 

4. Introduction to the examples 

Examples of coverings are given in the light of examples taken from the explanation of 
potential symmetries presented by Bluman and and Kumei (1989) and Bluman and Reid 
(1988). Potential symmetries of a system, of which one of the equations is in conserved 
form, are local symmetries of the auxiliary system that arises by introduction of the potential 
corresponding to the conserved form. The auxiliary system cove? the original system and so 
potential symmetries are special cases of non-local symmetries. 

We will show that the disappearance of symmetries, i.e. local symmetries of the original 
system that do not correspond to local symmetries of the auxiliary system, is disposed of, for 
any symmetry lost is recovered in an appropriate covering of the auxiliary system. In fact the 
lost symmetries are very special non-local solutions of the given covering and so theorem 3.1 
is applicable. 

Bluman and others have computed point symmetries of the wave equation uyy = c2uzx, 
in which the wave speed c = c(x ) ,  and of the auxiliary system corresponding to the potential 
U: U, = uy/c2 and uy = U,. In the first example we set c equal to fi. In this’setting one 
symmetry is lost, but recovered in an infinite-dimensional covering. 

In the other three examples c equals 1 - ~ x 2 ,  in which cawtwo point symmetries are lost. 
In the second examde one of themis recovered in a onedimensional extension of the auxiliary 
system. 

In the thiid example the other lost symmetry is recovered. Computations similar to the ones 
performed in the previous examples are seen to be more complicated. Therefore an abstract 
construction of the desired covering, which runs in accordance with the sketch of the proof to 
theorem 3.1, is favoured. 

In the fourth example a covering of the auxiliary system is given, not constructed, which 
recovers the lost symmetry considered in the previous example. 

5. First example 

Bluman has computed the point symmetries of the wave equation 

u y y  = 

and the auxiliary system which includes the potential U: 

u y y  =xu,  U, = u y / x  uy = U? . 
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Thepointsymmetryofthecoveredsystem(5.1), whichcannotbeextendedtoa1ocalsy"etry 
of the covering system (5.2). is given by 

x = (YU - ~ X Y U ,  -(y2+4x)uY)a, ( ~ 4 x y a , + ( Y 2 + 4 x ) a y + y ~ a u )  (5.3) 

of which the u-component is denoted by U = yu  - 4xyu, - (y' +-4x)uy. 

v-component, whose coefficient, V ,  has to satisfy 
The attempt to extend X to a symmetry of system (5.2). involves the introduction of the 

Dx(V) = DY(U)/x = ( Y U ~  + U - ~ X Y U , ,  - ~ x u ,  - (y' +4x)uYy - 2yuY)/x  

Dy(V)  =Dz(U)  = Y U ~ - ~ X Y U ~ ~  - ~ Y u , - ( ( Y ~ + ~ x ) u ~ ~ - ~ u ~ .  
(5.4) 

The second equation of (5.4) reduces to Dy(V) = Dy(-yv - 4xyv, - (y' + 4x)vy)  + v 
vdy  is introduced. In fact u1 is the potential and can be solved only if the integral U' = 

corresponding to the differential equation v, = uy/x:  

u y y  =xu ,  v, =LLy/x vy = uz U: = u / x  U; = U .  (5.5) 

The variables present in the setting (5.5) enable solving (5.4), whose solution is V = 
-yu - 4xyv, - (y' + 4x)uy + U'. To be precise, the tuple (U, V )  is a non-local solution of 
the system (5.2) covered by (5.5). 

Next the u'-component of X needs to be computed, whose coefficient has to satisfy the 
following system: 

Dx(U') = U / X  = (YU - ~ X Y U ,  - (y' + 4x)uY)/x  

Dy(U')  = V 
(5.6) 

-YV - ~ X Y V ,  - (y' + 4x)vy + U' . 
The solution of the first equation is to be U' = yul - 4xyu: - (y' + 4x)ui + 4 J U dx. Also 
the integral v' = 1 U dx is a potential, giving rise to 

uyy = xu,  Y v, = u y / x  vy = u x -  U: = u / x  U; = U U; = v  v' = U .  

(5.7) 

The non-local solution (U, V ,  U'), where U' = yu' - 4xyu: - ( y 2  + 4x)ui +4v1, of 
system (5.5) covered by system (5.7) is to be extended by the U'-component, whosecoefficient 
has to satisfy 

D,(V') = V = -YV - ~ X Y V ,  - (yZ +4x)vY + U' 
D y (  V'  ) -  - U = - Y U - ~ X ~ U , - ( ~ ' + ~ X ) U ~ .  

(5.8) 

To solve this system, the potential U' = 
not a power. Including the potential U' the system (5.7) extends to 

U' dy is added, the superscript of which is an index, 

u y y  = xuxx v, = u y / x  vy = U x  U; = u / x  U; = v 

U: =U' U2 = U 1  v ; = v  .;=U Y 

(5.9) 
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and the solution of (5.8) reads V' = 3yv' - 4xyvi - (y2 + 4x)vj  + 4 x 4  - 3u2. 

Dz(U2) = U1 and DY(U2) = VI, involves yet another potential u2: 
Likewise computation of the uz-component,~ whose coefficient is to be computed from 

UYY = xu*x U, = UY j x  VY = ux U; = U j x  U; = v 
(5.10) 

v = - u 1  u ; = x u  1 2  - U  . 
uZ=u'  u = u  x -  

1 1 
Y Y v x = u  v = u  

The solution Uz = 5yu2 - 4xyu: - (y2 + 4x)u: + 8v2 turns ( U ,  V, U', V', U') into a 
non-local solution of system (5.9) covered by (5.10). 

The coefficient of the v2-component, denoted by V2, has to satisfy D@) = V' ind 
DY(V2) = XU' - U 2  and is found to be expressed in another potential u3, V2 = 7yu2 - 
4xyv: - (y2 + 4x)u~  + 8xu: - 152 .  Including the potential u3, the system (5.10) extends to 

u y y  = xu, v , = u , j x  u y = u x  u ; = u j x  u ; = v  v : = v  u ' = u  Y 
(5.11) 

= U 1  = y' ., '=VI v 2 = x u '  - U 2  ' = U= = U2 9 

and so on. An infinite number of variables U ,  v ,  U', U', U', v2, . . . evolve, which are seen to 
satisfy the system 

In the setting of this system the symmetry X (5.3) prolongs to the symmetry Ua. + Va, + 
CEl(Uiaua + V'aui), where 

(5.13) 

Thus the lost symmetry of system (5.1) covered by system (5.2) turns out to be a non-local 
symmetry of (5.2). 

6. Second example 

Here one of the two lost point s y m m e ~ e s  of the wave equation 

2 2 
UYY = c uxx c = 1 --x 

covered by the auxiliary system 

2 uyy  = c=uxx vx = u y / c  uy = ux 
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is considered, whereas the other is treated in the next subsection. 
The symmetry Y = Ua. of the wave equation (6.1) 

Y = (xu + cu,)au (6.3) 

needsto beextendedby Va,,suchthatUa,+Va, isasy”etryoftheauxiliarysystem(6.2). 
The symmetry equation results in the following system for V: 

Dx(V) = Dr(U)/? 

Dy(V) 

( X U ,  + CUxy) /Cz = DX(-xu + CU,) + U 
(6.4) 

Dx(U) = (U - X U ,  + cuXx) = Dy(-xu + CUJ + U .  
In order to solve this system for V, the integd U dx or U dy needs to be available. 

Both integrals qual the potential w corresponding to the differential equation U, = u x ,  giving 
rise to the extended system 

U y g  = c u x x  U, =uy/c= uy = U x  w, = U w, = u .  (6.5) Z 

and the solution of (6.4) reads V = -xu + CU, + w. 

symmetry Ua. + Va, + Wa, of the covering system, where W is to be computed from 
Next the non-local solution (U, V) of system (6.2) covered by (6.5) is to be extended to a 

Dx(W) 5 V = -XU + CU, + w = ~ ( X W  + CWJ 

D,(W) = U = x u  +cur = Dy(xw + cw,). 
(6.6) 

As it happens, this system for W can be solved without introduction of further non-local 
variables, the solution being W = x w  + cw,. So the symmetry Y (equation (6.3)) prolongs 
to the symmetry of system (6.5) given by 

+ C U , ) ~ ,  + ( -XU + CU, + w)a, + ( X W  + cw,)a, (6.7) 

which in consequence is a non-local symmetry of system (6.2). 

7. Third example 

In the previous section one of the two lost point symmetries has been recovered. Here the 
other is considered. 

The symmetry Z = Ua, of system (6.1) 

is to be extended to a symmetry U a, + Va, of system (6.2), so V has to satisfy 

Dz(V) = Dy(U)/c2 = (XU + xyuY + cuX + cyuXy + CU,)/C* 

Dy(V) = D x W  = YU + X Y U ~  - ZXYU,  + C Y U ~ ~  + u y / c  + CU,, . (7.2) 
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The solution to these equation reads V = -xyu + cyu, + Cu, + w ,  where w is a potential of 
system (6.2), giving rise to the extended system 

U,, = czu, U, = uy/cz  U? = U, w*, = xu/c= + yu wy  = yu + x u .  (7.3) 

Next the w-component is to be computed fiom 

Dx(W) = x U / ~ ~ + y V = D , ( x y w + ~ y ~ ~ + C w , ) - ( 2 y u / c ~ + ( C + ~ / ~ ) ~ )  

~D,(W) = ~ U + X V = D , ( X ~ W + C ~ W , + C W ~ ) - ( ( ( C + X / C ) U + ~ Y U )  
(7.4) 

whose solution is W = xyw.+ cyw, + Cw,  - p .  including the non-local variable p ,  leading 
to the extension 

(7.3) px  = 2yu/cz+ (C + X / C ) U  p y  = (C + X I +  + 2 y u .  , (7.5) 

Likewise the non-local solution ( U ,  V, W) of system (7.3) covered by (7.5) has to be 
turned into a symmetry Ua, + Va, + Wa, + Pa, of (7.3, so P is to be computed fiom 

D,(P) = 2 y U / c 2 f ( C + x / c ) V  D,(P) = ( C + x / c ) U + 2 y V .  (7.6) 

The solution P = (C + x / c ) ( x w  + cyu + Cu) + ZCyu + 2y2u/c - 4 w / c +  q has given 
rise to the extension including q: 

(7.5) qx = ( 3 x / c - 3 C - 2 x y Z ) u / c 2 + 6 ~ ~ / c Z  qy = ( 3 x / c - 3 C - 2 x y Z ) v + 2 y w .  

(7.7) 

Further extensions of system (7.7) are necessary for construction of the covering of the 
auxiliarysystem(6.2)inwhichthesymmetry 2 (7.1) isextendedpropmly, butthecomputations 
involved are hard to perform and therefore the abstract approach as given in the sketch of the 
proof to theorem 3.1 is preferred. For the case under consideration this boils down to a series of 
successively one-dimensional extensions of the covering system, in which limit the non-local 
solution prolongs to a symmetry. The construction uses induction on the number of potentials 
introduced. 

Suppose that after several onedimensional extensions, whereby the potentials p' ,  . . . , 
p"-' have been included, the non-lGal solution v,-l = v~".,  of the system A,-' covered by 
the system An has been constructed. Consider the covering system An arisen from A.-! by 
including tbe potential p": 

Thus the integrability equation p;, = p;i, gives rise to the conservation law D,(F"-') ,= 
D,(G"-') of A.-!. 

The attempt to extend the non-local solution v,-l = Ua, + E:=;' Piapi to a symmetry 
U,-' + P"a,. of A" results in the following system for P": 

D,(P") = F" d"_fprvn-l(Fn-') DJP") = G" d"_fprv,-1(Gn-l) (7.9) 

giving rise to the definitions of F" and G". 
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Assume that this system for P" cannot be solved in the current setting, otherwise the 
desired covering has been provided, i.e. the non-local solution vo = U& of A0 covered by AI 
extends to the symmetry v, = V,-I + P"a,. of An. 

The solution of system (7.9) may $en be given by P" = p"+', where the potential p"+' 
corresponds to the conservation law D,(Fn) = Dz(Gn) on A" (Krasil'shchik and Vinogradov 
1984, p 204). So V,-I extends to the non-local solution v,, = v.-l + p"+'a,. of An covered 
by &+I: 

(7.10) 

Next, the same has to be done for Pn+l and so on. By induction, an infinite number of 
potentials is introduced, giving rise to the system 

(7.11) 

The system 
symmetry 

covers A I  as desired, for the non-local solution vo = U& corresponds to the 

(7.12) 

For the case under consideration A0 is the wave equation (6.1), A1 is the auxiliary 
system (6.2) and U& = Z (7.1). In consequence the functions F" and G", see (7.9), where 
Fo = uy/c2 and Go = uz7 simplify  to^ 

F" = prvo(F"-') and G" = prvo(G"-'). (7.13) 

S. Fourth example 

In the previous example the lost symmetry Z (7.1) of system (6.1) covered by the auxiliag 
system (6.2) has been recovered by an abstract construction, giving rise to the covering A 
(equation (7.1 1)). Here, another covering is given, which also recovers this lost symmetry. 

The following system covers system (6.1) (uo = U and uo = U): 

2 
uyy = c uxx 

n - " 4; = p + 1 -  " U: = U; I C 2  v; = u t  p; =un/c2 p; = U" qx - U  x - P (8.1) 
u"+l - n - q  n = 0 , 1 , 2 , 3  ,..._ 

A generalized vector field U'a,t + Via,, + Pia,, + Qat, is asymmetry of (8.1) if 
and only if (U = Uo) 

D;(U) = c2D:(U) 

Dx(Vi) = Dy(U')/c2 Dy(Vi) = D,(Ui) D,(P') = Ui/cz Dy(Pi) = Vi (8.2) 
Dx(Q) = V i  Dy(Q)  = U' DX(U'+') = P' Dy(Ui+') = Q i = 0,1,2,3,. . . 
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holds for all solutions of (8.1). 

to the symmetry 

U" = xyu" + cyu: + Cui  - 2n(xqn + cu") 

V" = -xyu" + cyu: + CU; + yq"~-  2nun/c + (2n + I)(xp" - un+') 

P" = -xyp" + cyp: + c p ;  + yu"+' + 2(n + I)(xu"+' - q"+') - (2n + I)q"/c 

Q" = xyq" + cyq: + cq; - (2n + I)(XU"+' + cp") . 

Computations have shown out that the symmetry Z = Ua. (equation (7.1)) can be extended 
viaus + VLa,t + Pia,. + @a,(, where 

(8.3) 

Because the auxiliary system (6.2) is covered by the system (8.1) and Z extends to a 
symmetry of (8.1), the lost symmetry Z turns out to correspond to a non-local symmetry of 
the auxiliary system. 

9. Comment on infinite-dimensional coverings 

One mightquestion the infinite-dimensionalcoverings and restrict oneselfto finite-dimensional 
coverings only. However, infinite-dimensional coverings arise &om the same natural 
geometrical point of view that gave rise to the generalized symmetries. 

To show this we consider a generalized vector field, i.e. an expression in the form 

where ti and are defined on some jet bundle Jk, k finite. If ti and vu are defined on J", 
then this generalized vector field is a vector field on J". The corresponding group action is a 
point transformation on Jo and therefore symmetries in this form are called point symmetries. 

If the generalized vector field is not a point vector field, then it is not a geometric object 
of J". Yet we can prolong the vector field and see if its kth-order prolongation turns out to be 
a vector field of J' for some k finite: 

As it happens, some generalized vector fields correspond to vector fields on J'. 
Yet not all generalized vector fields are recovered in this way as'geometrical objects. For 

otherk finite, no more generalized vector fields are recovered as geometrical objects of the kth- 
orderjet bundle, as proven by B8cicMund (1876). Yet all generalized vector fields correspond to 
well defined vector fields on the infinite-order jet bundle Jm. Thus, in general, a generalized 
vector field is a geometric object of Jm. 

Now we will consider a non-local symmetry, or more precisely, a non-local solution, i.e. 

(9.3) 

where 9 and pa depend on a finite number of local and non-local variables. Now we want 
to recover this expression by a geometric object, i.e. a well defined vector field of some jet 
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bundle. As before, in general all differential consequences of the variables considered, local 
and non-local, need to be included. 

However, the components of the non-local variables have to be constructed as well 
according to prolongation. As it happens, in general, new non-local variables have to be 
involved in order to obtain those components. This resembles the case of the generalized 
vector fields because, in general, components of derivatives involve higher-order derivatives, 
which then have to be included as well. 

A typical example of the introduction of an infinite number of non-local variables in order 
to recover a non-local symmetry has been obtained in section 5. Also an infinite number of 
conservation laws of the Korteweg-DeVries equation ut = UUI + u3, U, = uz and u3 = uxxx, 
arises by recovering the non-local solution 

The non-local variable p corresponds to the conservation law ut = (u2/2 + U Z ) ~ ,  i.e. p x  = U 
and pt = u2/2  + ~ 2 .  

10. Conclusion 

We have shown that the theory of coverings set up by Krasil’shchik and Vinogradov (1989) 
offers the natural setting for the introduction of non-local symmetries. Potential symmetries, 
i.e. non-local symmetn’es introduced by Bluman and Kumei (1989) and Bluman and Reid 
(1988), give rise to loss of symmetries. Four examples of coverings have been given, in which 
symmeisies lost have been recovered, demonstrating the power of the theory of coverings. 
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